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Supermolecular CCSD(T) ab initio calculations of potential energy curves for the electronic
ground states of heteronuclear van der Waals complexes formed from the atoms of IIB
group are presented. The physical origin of stability of the studied structures was analyzed
by the symmetry-adapted perturbation theory. The magnitude of dispersion term increases
with the increase of diatomic mass, but the relative importance of dispersion vs Hartree–
Fock induction energies decreases in the order CdZn > HgZn > HgCd. Theoretical calcula-
tions of the temperature dependence of the shear viscosity for low-density binary mixtures
are in good agreement with the temperature dependences of the shear viscosity obtained
from empirical formula.
Keywords: Ab initio calculations; Potential energy curves; van der Waals complexes; Shear
viscosity; Zinc; Cadmium; Mercury; Quantum chemistry.

The interest in the weakly bound complexes formed from the atoms of the
IIB group has been revived in recent years mainly because of their prospec-
tive role in excimer lasers and catalytic and adsorption processes on various
surfaces1,2. Several experimental studies of excitation and fluorescence
spectra of the HgZn excimer were investigated using the pump-and-probe
method of laser spectroscopy3. Other available experimental data are low-
density shear viscosity measurements of pure IIB group substances4. Based
on these measurements and on the results of dimeric spectroscopy, the
ground-state equilibrium distances re were determined as 3.71 Å for Hg2,
4.38 Å for Cd2 and 4.68 Å for Zn2 (ref.5). These distances are larger by ca. 10%
for Zn and by ca. 6% for Cd than the previous experimental values ob-
tained from the free-jet-beam-expansion and laser-excitation techniques6.
The IIB group diatomic complexes have been studied also theoretically7–15.
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In these works the potential energy curves of ground and excited states cal-
culated at different levels of theory are provided. Besides potential energy
curves the material properties (e.g. spectroscopic constants, polarizabilities,
second virial coefficients) can be found in these works.

In our recent work16 we have also theoretically studied the homonuclear
IIB group dimers. The calculated potential energy curves were used for cal-
culations of temperature dependences of shear viscosity and these were
compared to the experimental data. The largest deviations from experimen-
tal data were observed in the case of the zinc dimer (see Fig. 3 in ref.16).

The heteronuclear IIB group complexes have not been studied theoreti-
cally so exhaustively as the homonuclear ones. Of previous theoretical
studies one can mention the multireference CI study of Czuchaj et al. for
CdHg (ref.17) and for ZnHg and ZnCd systems18 and MRCI study of poten-
tial energy curve for HgZn of Gao et al.19, or the perturbational (MP2–MP4)
and QCISD(T) study of Bieroń and Baylis9,20. Of experimental studies, the
laser spectroscopy studies of HgCd (ref.21) and HgZn (ref.22) system should
be mentioned. There are quite large deviations in the ground-state equilib-
rium internuclear distances and well depths between different theoretical
and experimental approaches (see Table 1 in ref.9).

Despite the above mentioned supermolecular (SM) ab initio calculations
on the group IIB dimers and heteroatomic complexes, there is still a de-
mand for the detailed analysis of interaction energy contributions which
stabilise the above mentioned systems. Encouraged by earlier theoretical
studies, one of the goals of this work was to provide a basis-set-superposition-
error (BSSE)-free characterization of heteronuclear IIB group diatomic com-
plexes at the supermolecular CCSD(T) theoretical level. For the calculations
we decided to use the pseudopotentials extended with a set of mid-bond
functions. The same basis sets were used in our previous study of homo-
nuclear IIB group dimers16. The physical origin of the van der Waals (vdW)
structure stability was analyzed using the symmetry-adapted perturbation
theory23 (SAPT).

The second goal of our study was utilization of the relation between the
microscopic vdW interaction potential and macroscopic transport proper-
ties. From the obtained theoretical potential energy curves and from the
potential energy curves of homonuclear IIB group complexes published re-
cently by us in ref.16, temperature dependences of shear viscosity were sim-
ulated. The calculations of shear viscosity were performed using a rigorous,
kinetic theory based approach as well as empirical formulae commonly
used in the technical practice.
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THEORETICAL

Quantum Chemical Calculations

Ab initio studies were evaluated using the supermolecular (SM) approach24

where the interaction energy is obtained as the difference between the
value of the energy of the complex EAB and the sum of the energies of its
constituents (EA + EB)

∆E = EAB – EA – EB (1)

where symbol ∆ denotes terms calculated as differences.
The energies can be calculated at various levels of theory, at the Hartree–

Fock (HF) level or at theoretical level involving correlation energy, e.g. the
Møller–Plesset (MP) level25 or the more popular coupled cluster (CC) level26.
Although the SM approach is conceptually and computationally simple, it
does not offer a detailed picture of interaction forces. On the other hand,
the intermolecular perturbation24 theory (I-PT) allows direct calculations of
electrostatic (Eelst), exchange-penetration (Eexch), dispersion (Edisp) and in-
duction (Eind) contributions which provide physical interpretation of the
interactions between the monomers of a complex

E E E E E Enij nij nij nij
int = + + + +∑ ∑els

( )
ind
( )

disp
( )

exch
( )

other
( )nij∑∑∑ . (2)

The superscript n in Eq. (2) denotes the order of the perturbation VAB and
i (j) indicate the order of the Møller–Plesset fluctuation potential for the A
(B) system. Last term ∑E nij

other
( ) denotes all mixed terms and higher order terms

with not so simple physical interpretation24.
The HF-SCF interaction energy can be decomposed as follows

∆ ∆ ∆E E EHF HL
def
HF= + (3)

where ∆EHL is the Heitler–London (HL) energy27 and ∆Edef
HF is the HF defor-

mation contribution24. According to the I-PT defined in the orthogonalized
basis sets28,29, ∆EHL may be further divided into the first-order Hartree–Fock
electrostatic (Eels

(100) , for notation for this and other perturbation terms, see,
e.g., ref.23) and HL exchange-penetration ∆Eexch

HL components

Collect. Czech. Chem. Commun. 2007, Vol. 72, No. 3, pp. 363–378

Weakly Bound Complexes CdZn, HgZn and HgCd 365



∆ ∆E E EHL
exch
HL

els
(100)= + . (4)

The HF deformation energy originates in the mutual electric polarization
effects. This term might be approximated using the sum of the following
two perturbation terms: Eind

(200) and Eexch -ind
(200) (second-order HF Coulomb and

exchange induction energies)23.
The second-order MP2 correlation interaction energy can be partitioned as

∆ ∆E E E E Eint
(2)

els
(12)

disp
(200)

exch -disp
(200)

oth= + + + er
(2) (5)

where Eels
(12) denotes the second-order electrostatic correlation energy (con-

taining Eels
(102) and Eels

(120) energies). Edisp
(200) and Eexch -disp

(200) represent the second-
order Hartree–Fock dispersion30 and exchange-dispersion energies23. ∆Eother

(2)

encompasses the remaining exchange and deformation correlation correc-
tions as well as the response effects, not included in the first three second
order terms of SAPT.

Using the diagrammatic techniques, it is possible to distinguish the third-
order interaction energy contributions like the dispersion-correlation (Edisp

(210) ,
Edisp

(201) ) and Hartree–Fock third-order dispersion (Edisp
(300) ) energies29. However,

complete physical interpretation of higher than second-order contributions
of the interaction electron-correlation energies is not straightforward.

Shear Viscosity Calculations

At low density, the shear viscosity η of one-component real gas can be writ-
ten as31,32

h
m k T

T
B= 5

16

1 2

2 2 2

( )

( *)

/

( , )*

π
πσ Ω

(6)

where m is the atomic weight, kB is the Boltzmann constant, σ is the colli-
sion diameter for low energy collisions (it is the value of r for which the po-
tential function is equal to zero), T is the absolute temperature and T* is the
reduced temperature (T* = kBT/De, where De is the well depth of potential
energy curve). The expression for the shear viscosity (6) has the same form
as in the rigid-sphere model except for the term Ω(2,2)*(T*) in the denomina-
tor. The transport coefficients of low-density real gas can be expressed in
the terms of the collision integrals Ω(l,s). These are divided by corresponding
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rigid-sphere values of Ω(l,s) for obtaining the expressions for transport coef-
ficients in a form similar to the rigid-sphere model with a specific factor de-
scribing the deviation from this model. This leads to the reduced collision
integrals Ω(l,s)*(T*) which can be defined as32

Ω ( , )*
*
* ( )*( *)

( ) ! *
* ( *) *l s

s

E
T s lT

s T
E Q E E=

+ +

−∞
+∫

1
1 2

0

1e d (7)

where E* is reduced kinetic energy (E* = E/De) and Q(l)* are reduced cross-
sections as they are defined in ref.32 in terms of reduced parameters.

Analogously to the one-component gas, one can calculate the viscosity
η12 from the potential function V12(r12) of the interaction of two different
atoms characterized by the collision diameter σ12 and the dissociation en-
ergy De,12. Viscosity η12 is given by

η
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where m1, m2 are the atomic weights of the atoms 1, 2 and Ω12
2 2( , )* (T*) is the

collision integral for the potential function V12(r12). It can be evaluated ac-
cording to Eq. (7) with reduced parameters calculated using the hetero-
nuclear potential parameters σ12 and De,12.

In a mixture of two components, collisions occur between the atoms
1 and 1, between the atoms 2 and 2 and between the atoms 1 and 2. The
viscosity η12 represents therefore only one of the three contributions to
viscosity of the binary mixture. One should mention the close relationship
between this viscosity and the coefficient of diffusion D12 (ref.32)

η12
1 2

1 2
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5
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where p is pressure, M1, M2 are molar weights of components and A 12
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fined as
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This relationship allows to check the calculated η12 through the measured
diffusion coefficient D12. For the viscosity of a binary mixture the following
expression can be written32

η η

η η
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+
+

1 Z

X Y
(11)
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with ηi, xi representing the one-component viscosity and molar fraction of
i-th component, respectively.

Calculation Details

All I-PT calculations were performed with SAPT program codes23 interfaced
to the Gaussian 03 program package33. Gaussian 03 was used for SM calcu-
lations as well. The supermolecular BSSE was determined by the counter-
poise method of Boys and Bernardi34. The presented HF interaction energy
terms were evaluated using the dimer-centered basis sets of the constituent
monomers. In the present study the relativistic small core Stuttgart RSC
1997 ECP (hereafter ST97)35 and CRENBL ECP (hereafter CRENBL)36 pseudo-
potentials were used. In order to improve the effects of the basis set on the
quality of interaction energy calculations the set of modified midbond
functions [3s3p2d2f] of Tao and Pan (with the sp exponents: 0.9, 0.3, 0.1;
d: 0.6, 0.2; f: 0.6, 0.2)37 was used. These bond functions are fixed at the cen-
ter of the axis defined by atoms.

The calculated dependences of interaction energies on the distances were
fitted by the Morse potential function
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V D R R R R= − − − − −e e e[exp( ( )) exp( ( ))] .2 2α α (15)

For calculation of the collision integral we use the computer code given
in Appendix 12 of ref.31 which is based on the method illustrated in ref.38.
The accuracy of the numerical calculation is well within the second-order
Chapman–Cowling correction31.

Using the low-density shear viscosities of one-component IIB group ele-
ment gases (see our previous work16) and η12 viscosities, one can calculate
the low-density shear viscosity of a binary mixture of arbitrary composi-
tion. Shear viscosities were calculated according to the formulae (7)–(14).
For the visualization purpose the following three mixture compositions
were chosen: 25, 50 and 75 mole %.

We have not found in the literature the direct viscosity measurement
data for binary mixtures of the IIB group elements in gaseous phase, but
there are empirical formulae for the viscosity of binary gaseous mixtures39.
These formulae are mostly based on weighting the viscosities of individual
components, e.g.

η
η

mix = ∑
∑

i i i

i i

x M

x M
(16)

or

η
η

mix
c

c

= ∑
∑

i i i i

i i i

x M T

x M T
(17)

where ηi, xi, Mi and Tci are the viscosity, mole fraction, molar weight and
critical temperatures of the i-th component, respectively.

One of our goals was to assess the quality of these empirical formulae ex-
pressing the viscosity of mixtures. To be correct, the experimental viscosi-
ties of mixtures should be compared with those calculated according to the
empirical formula using experimental viscosities of pure substances. Unfor-
tunately, due to the lack of experimental data for binary mixtures such ap-
proach is impossible. A rigorous calculation of binary mixture viscosity can
therefore serve as a benchmark for the assessment of the empirical formu-
lae. For the consistency of the results, the same type of viscosity data of
pure substances should be used in empirical and rigorous approaches. In
contrast to the rigorous approach, in the empirical formula there is no term
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originating from the mutual interaction of individual components like the
viscosity η12 for which only theoretical data are available. So, we decided to
use theoretical viscosity data for pure substances as well.

After assessment of the quality of the formulae (16) and (17) the better of
them will serve for calculation of the binary mixture viscosity from experi-
mental one-component gas viscosities. These viscosities will be considered
as the experimental binary mixtures shear viscosities and will be used for
evaluation of relative deviations of rigorous binary mixture shear viscosity
calculations using CCSD(T)/ST97 potential energy curves. As the experi-
mental one-component gas viscosities the Morse fits from Ceccherini and
Moraldi work5 will be used (dashed lines in Figs 1–3 in ref.5). In our previ-
ous work16 the relative deviations of one-component gas viscosities (evalu-
ated using CCSD(T)/ST97 potential energy curves) from experimental ones
were:

for Zn –5.7% at 875 K and –6.7% at 950 K,
for Cd +4.3% at 800 K and +3.3% at 900 K and
for Hg +5.8% at 500 K and +0.5% at 900 K.

The calculations of all binary mixtures shear viscosities were performed
in the temperature region 700–1000 K. The experimental viscosities were
approximated with the following formulae:

ηZn(T) × 108 Pa s = 6.10T + 753 (18)

ηCd(T) × 108 Pa s = 7.01T + 336 (19)

ηHg(T) × 108 Pa s = 10.05T – 462 (20)

where the temperature T is in K. The above defined relative deviations for
700 and 1000 K are, respectively: for Zn –3.9% and –7.4%, for Cd +4.8%
and +2.0%, for Hg +3.3% and –1.0%.

RESULTS AND DISCUSSION

The calculated CCSD(T) spectroscopic constants of the metal dimers are
compared in Table I with the theoretical and experimental results from
other studies. One can notice a wide variability of the equilibrium inter-
atomic distances in different theoretical and experimental studies. A con-
siderable effect of mid-bond functions on the calculated equilibrium bond
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lengths and dissociation energies should be noted. Without mid-bond func-
tions the equilibrium bond lengths are much larger (using ST97 basis set by
about 0.6–0.7 Å, using CRENBL basis set by about 1 Å in HgCd and 2 Å in
systems containing Zn). The dissociation energies are underestimated more
than twice (see Table I). In systems containing Zn using CRENBL basis set
the results are completely unreliable (dissociation energies are 3 cm–1 for
CdZn and 4 cm–1 for HgZn). CRENBL basis set provides much worse results
than ST97. Mid-bond functions suppress the difference in the quality of
CRENBL and ST97 basis sets.
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TABLE I
Theoretical CCSD(T) and experimental spectroscopic properties of CdZn, HgZn and HgCd
complexes. The values in parenthesis are obtained without mid-bond functions

System Calculation Re, Å ωe, cm–1 ωexe, cm–1 De, cm–1

CdZn CRENBL 3.98 (6) 20.5 0.43 244 (3)

ST97 3.94 (4.5) 20.8 0.44 246 (116)

MP4/QCIa 4.50/4.55 257/237

MRCI(SD)b 4.30 125

HgZn CRENBL 3.87 (5.5) 19.7 0.36 269 (4)

ST97 3.82 (4.5) 20.9 0.39 281 (117)

MP4/QCIa 4.25/4.25 309/307

MRCI(SD)b 3.44 370

MRCIc 4.32 22.4 0.24 333

HgCd Exp.d 4.66 19.3 0.3 310

CRENBL 3.81 (4.8) 19.4 0.29 327 (72)

ST97 3.81 (4.5) 19.5 0.27 355 (133)

MP4/QCIa 4.15/4.15 345/334

MRCI(SD)e 3.57 410

Exp.f 3.95 335

Exp.g 3.25

a Ref.9; b ref.18; c ref.19; d ref.22; e ref.17; f semiempirical results of ref.21; g experimental value
of ref.40



Using the I-PT decomposition, we analyzed the relative importance of
fundamental components of the interaction energy at the stationary points
of the potential energy curves. The relevance of electrostatic, induction and
dispersion forces can be assessed on the basis of the relations of Eels

(100) ,
Eind_ resp

(200) and Edisp
(200) contributions (Figs 1 and 2). All separated SAPT contribu-

tions to the interaction energy calculated at the HF level of theory indicate
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FIG. 2
Interaction correlation CCSD(T) energies and their relevant SAPT components for studied
dimers. Each component is calculated in CRENBL (left bar) and ST97 (right bar) basis sets

FIG. 1
Supermolecular SCF interaction energies and their relevant SAPT components for studied
dimers. Each component is calculated in CRENBL (left bar) and ST97 (right bar) basis sets



an increase in absolute magnitudes with increasing reduced mass. The elec-
trostatic induction energy Eind_ resp

(200) (the subscript resp indicates the inclusion
of response effects, see e.g. ref.24) is larger than the pure HF electrostatic
term Eels

(100) . However, the increase in the induction and electrostatic energies
is different. The ratio Eels

(100) :Eind_ resp
(200) is maximal for CdZn and slightly de-

creases with increasing reduced mass, i.e. 0.59 (0.56) for CdZn, 0.55 (0.55)
for HgZn and 0.48 (0.40) for HgCd in the ST97 (CRENBL) basis set. The in-
duction energy Eind_ resp

(200) is composed of two contributions – energy of the in-
duction interaction of atom 1 with the static field of atom 2 and vice versa.
For the CdZn complex, these contributions are almost the same (–2.7 mEh
in ST97 and –2.6 mEh in the CRENBL basis set). For HgZn and HgCd the
ratio of the energy of the induction interaction of mercury atom with static
field of zinc or cadmium atom to the energy of reverse induction interac-
tion is 1.6 and 2.7–2.8 for ST97 and CRENBL basis set, respectively.

A dominant part of the interaction correlation energy naturally originates
in the dispersion energy. Figure 2 shows the magnitude of the dispersion
energy increasing in the order CdZn < HgZn < HgCd. On the other hand,
the importance of dispersion vs induction interaction is decreasing in the
order CdZn > HgZn > HgCd, which is demonstrated by the ratios Edisp

(200) :
Eind_ resp

(200) –0.90 (0.86) for CdZn, 0.80 (0.82) for HgZn and 0.64 (0.58) for HgCd
in ST97 (CRENBL) basis set. The higher orders of dispersion energies con-

Collect. Czech. Chem. Commun. 2007, Vol. 72, No. 3, pp. 363–378

Weakly Bound Complexes CdZn, HgZn and HgCd 373

FIG. 3
Theoretical viscosities η12 for gas-phase IIB group elements. Full symbols are obtained using
the CRENBL and open symbols using the ST97 basis set: CdZn (�, �), HgZn (�, �) and HgCd
(�, �), respectively.
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FIG. 4
Theoretical shear viscosities (from ST97 basis set potential curves) of pure gas-phase IIB group el-
ements and their binary mixtures of 25, 50 and 75 mole % compositions for the mixtures of: a
cadmium (�) and zinc (�), b mercury (�) and zinc (�), c mercury (�) and cadmium (�). Solid
lines without symbols stand for the rigorous approach viscosities, dashed lines with symbols �

and � stand for the viscosities obtained using empirical formulae (16) and (17), respectively

a

b

c



tribute minimally to the Edisp
(2) (E E E Edisp

(2)
disp
(200)

disp
(12)

disp
(22)= + + ) dispersion energy.

These energies have a small stabilizing effect in the case of CdZn and HgZn
dimers and almost no effect in HgCd. The electrostatic correlation energies
are positive and little sensitive to the type of atoms involved in the inter-
action. The sum of the SAPT correlation contributions Ecorr_ resp

SAPT as calculated
by SAPT 2003 is approximately 40% larger in magnitude than ∆Ecorr

CCSD(T) for
each system in both basis sets. Finally, in contrast to the ∆ESCF energies,
the repulsive Eexch -disp

(200) and electrostatic correlation contributions (Eels_ resp
(12) =

E Eels_ resp
(120)

els_ resp
(102)+ )23 do not significantly compensate the attractive dispersion

energies.
In the next step the calculated potential energy curves were utilized to

obtain temperature dependences of low-density shear viscosities. The re-
sults for η12 are depicted in Fig. 3. One can see a small discrepancy in
CRENBL and ST97 results for CdZn and HgCd dimers and almost complete
matching for the HgZn complex. The dependences of η12 on temperature
are linear in the investigated temperature intervals. A comparison of theo-
retical and experimental low-density shear viscosity of pure IIB group ele-
ments was presented in our previous work16. Comparison of empirical
formulae with a rigorous approach to shear viscosity calculation is depicted
in Figs 4a–4c. From these figures it is clear that the empirical formula (16)
without critical temperature involved provides better results for the viscos-
ity of binary mixture composed of IIB group elements than the formula (17)
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TABLE II
Experimental viscosities of the one-component IIB group gases and their binary mixtures

Component

T, K

Experimental viscosity (10–8 Pa s)
for various % of component 1

1 2 0 25 50 75 100

Cd Zn
700 5 024 5 090 5 147 5 198 5 242

1 000 6 854 7 003 7 132 7 245 7 344

Hg Zn
700 5 024 5 712 6 212 6 593 6 891

1 000 6 854 8 029 8 884 8 533 10 042

Hg Cd
700 5 242 5 750 6 185 6 562 6 891

1 000 7 344 8 175 8 887 9 504 10 042



of Herning and Zipperer which does involve the critical temperature. There-
fore the formula not involving the critical temperature was used for calcula-
tions shear viscosities of the experimental binary mixtures from pure gases
viscosities (Table II). The rigorously calculated shear viscosities of binary
mixtures and their relative deviations from the experimental ones are sum-
marized in Table III.

CONCLUSION

The ab initio potential energy curves based on the pseudopotentials for
heteronuclear IIB group diatomic complexes were evaluated at the
supermolecular CCSD(T) level. The obtained potential energy curves can be
well fitted by the Morse potential function. In the minima of potential
energy curves the interaction energy was separated into fundamental
components using the I-PT. The importance of the dispersion interaction
in comparison with the induction interaction increases with increasing
internuclear separation, i.e. it has the highest value for the CdZn complex
and the lowest one for the HgCd complex. The Morse fit of the potential
curves presented in this work as well as the potential curves of homo-
nuclear systems from our previous work16 was used to simulate the temper-
ature dependences of low-density shear viscosity of binary mixtures. In
addition to the rigorous kinetic theory approach, empirical formulae for
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TABLE III
Rigorously calculated shear viscosities of binary mixtures and relative deviations from the
experimental shear viscosities (calculated using formulae (16) and (18)–(20)) of Cd + Zn,
Hg + Zn and Hg + Cd binary mixtures

Component

T, K

Rigorous approach viscosity (10–8 Pa s) and relative deviation (%)
for various % of component 1

1 2 25 50 75

Cd Zn
700 5 050 –0.8 5 232 +1.6 5 379 +3.5

1 000 6 706 –4.2 7 012 –1.7 7 272 +0.4

Hg Zn
700 5 707 –0.1 6 344 +2.1 6 798 +3.1

1 000 7 651 –4.7 8 642 –2.7 9 389 –1.5

Hg Cd
700 5 993 +4.2 6 425 +3.9 6 797 +3.6

1 000 8 230 +0.7 8 880 –0.1 9 450 –0.6



binary mixture viscosity were applied. The agreement between the rigorous
approach and the empirical formulae usually used in technical practice is
fairly good.

There is a wide variability of equilibrium interatomic distances in differ-
ent theoretical and experimental studies. Possibly the experimental shear
viscosities of binary mixtures of group IIB element, or, better, diffusion co-
efficients, which are closely related to η12 viscosities and are dependent
only on heteronuclear potential energy curves, can offer a clue to the cor-
rect values of equilibrium distances.

The work has been supported by the Slovak Grant Agency (Projects Nos 1/3566/06 and 1/2021/05).
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